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Abstract

Representing runoff process complexity in a simple model structure remains a challenge in hydrology. We present an integrated
approach to investigate runoff processes using a hillslope tracer experiment and modeling exercise to explore model parameterization,
process representation, and transit times. A spatially-explicit model constrained by soil hydrologic properties, runoff, and applied tracer
data was used to identify the dominant processes necessary to explain both water and solute flux from a steep hillslope. The tracer data
allowed for the rejection of model parameter sets based on the calibration to runoff data alone, thus reducing model uncertainty. The
additional calibration to tracer data, improved parameter identifiability and provided further insight to process controls on hillslope-
scale water and solute flux. Transit time distributions developed using the model provided further insight to model structure such as sub-
surface volume, mixing assumptions, and the water table dynamics. Combining field experiments with the modeling exercise may lead to
a more comprehensive assessment of runoff process representation in models.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Field studies in hillslope hydrology often reveal com-
plex hydrological processes that operate across a range
of spatial and temporal scales and antecedent wetness
conditions [1,9,18]. These complex hydrological descrip-
tions that we develop from field studies are difficult to
incorporate within a modeling framework due to the dis-
parity between the scale of measurements and the scale of
model sub-units and the natural heterogeneity of catch-
ments [6,8]. Thus, many hydrologists have moved away
from fully distributed physically-based models and toward
more conceptually-based models that describe dominant
hydrological processes at the hillslope and catchment
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scales [4,8]. However, parameters represented in many
conceptual models are often not physically-based or
related to physical properties, and therefore cannot be
established prior to a model calibration-validation exer-
cise. An additional problem is that the information con-
tent in a rainfall-runoff record limits the complexity of
conceptual model structures available to test and explore
internal process dynamics [27,31,51].

Recent model calibration approaches have constrained
parameterizations using additional data sources such as
tracers [68], groundwater levels and estimated saturation
areas [20,21], and other multiple measures [22,42]. Multi-
criteria calibration approaches often result in less adequate,
but acceptable fits to observed runoff data (compared to
calibration using runoff alone) that are generally more con-
sistent with process findings [51]. These models, which
focus on internal process dynamics and less on calibra-
tion-based schemes, are necessary in reducing predictive
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uncertainty and to develop new model descriptions that
match the level of process understanding and available
data information content [56]. This is particularly impor-
tant as interest in catchment water quality increases
[13,15,38], since water sources, stores, and pathways within
hillslopes and catchments must be adequately represented
in models to predict and understand the behavior of solutes
(e.g., geochemistry, contaminants, or conservative tracers).
Catchment modelers are increasingly challenged to incor-
porate water quality aspects into models to deal with prob-
lems such as acidification [61], cumulative effects [53],
nutrient cycling [16], total maximum daily loads, and con-
tamination. The age or transit time of water offers a link to
water quality since the contact time in the subsurface lar-
gely controls stream chemical composition, revealing infor-
mation about the storage, flow pathways and source of
water in a single measure.

The transit time distribution represents the integrated
hillslope or catchment scale response of the diverse flow
pathways that participate in solute transport, thus con-
necting process complexity with model simplification.
Water transit times are typically determined by black-
box modeling of environmental tracers (e.g., 18O, 2H,
3H, CFCs, and SF6), in which input (rainfall) and output
(discharge) tracer concentrations are used to estimate
parameters of an assumed time-invariant distribution that
represents the transit time [36,39,67]. With this approach,
however, we are unable to directly characterize the shape
of the transit time distribution (TTD) and examine the
assumption of time-invariance, which are undoubtedly
important in controlling the fate and transport of solutes
at the hillslope and catchment scales under natural rain-
fall conditions. While there has been some recent work
on deriving transit time distributions from a theoretical
perspective based on stochastic-mechanistic models
[33,54], there has been little experimental work to directly
determine the distribution of transit times with the
exceptions of Nyström [45] and Rodhe et al. [49] (from
roof-covered catchment studies), especially during non-
steady-state conditions.

Monitoring applied tracers through storm and non-
storm periods offers an alternative approach to black-box
modeling, where tracer breakthrough curves can be mea-
sured to infer transit time distributions in a more experi-
mental fashion rather than the inverse estimation
problem of parameterizing simple black-box models. There
have been numerous applied tracer studies on hillslopes
[10,12,26,34,44,46,66]; however, most of these studies did
not focus on determining hillslope-scale transit time distri-
butions and interpretative models were largely solute trans-
port models (i.e., convection-dispersion models) as
opposed to coupled hydrologic-tracer models.

The coupling of solute tracer and hydrologic models
allows for a comprehensive evaluation of model struc-
ture, in terms of predicting runoff and tracer, and verifi-
cation that the model is working for the right reasons
and is consistent with our understanding of reality
[30,70]. There are very few catchment models that incor-
porate tracers in a spatially-explicit manner with limited
complexity. For example, HSPF, a commonly used and
highly parameterized hydrologic simulation model that
is coupled with water quality models, is difficult to
calibrate due to the number of parameters and their
non-uniqueness [17]. There is a critical need to simplify
process complexity to achieve parsimonious models that
transcend scaling issues and represent dominant physical
processes [55].

In this study, we combine the merits of an applied tracer
experiment at the hillslope scale and a simple, spatially-
explicit hydrologic model to: (1) identify the dominant pro-
cesses necessary to explain both water and solute flux, (2)
test a simple, parsimonious model constrained by soil
hydrologic, runoff, and applied tracer data, and (3) use
the model as an exploratory tool to directly infer potential
hillslope transit time distributions under steady and non-
steady conditions. Our work builds upon the study of
Weiler and McDonnell [71] that introduced a model for
performing ‘‘virtual experiments’’ at the hillslope-scale
for the purposes of exploring first-order controls on hydro-
logical processes in a controlled environment. Here we
apply the same model to a field tracer experiment in an
effort to simplify observed process complexity and then
use the model to investigate dominant process controls
on water transit time.

2. Site description

The study was conducted in Watershed-10 (WS10,
10.2 ha), which is part of a larger research effort at the
H.J. Andrews Experimental Forest (HJA) Long-Term
Ecological Research (LTER) program in the west-central
Cascade Mountains of Oregon, USA (44.2�N, 122.25�W)
(Fig. 1). WS10 has a temperate maritime climate with
wet mild winters and cool dry summers. The mean annual
precipitation is 2220 mm (averaged from 1990 to 2002),
about 80% of which falls between October and April dur-
ing long duration, low to moderate intensity frontal
storms. Relatively light snow accumulations are common,
but seldom persist longer than 1–2 weeks and generally
melt within 1–2 days. No significant snow accumulation
was observed during this study (9 December 2002 to 31
March 2003). On average, 56% (range: 28–76%) of the
annual precipitation becomes runoff. The vegetation is
dominated by a naturally regenerated second growth
Douglas-fir (Pseudotsuga menziesii) stand resulting from
a 1975 clear-cut harvest.

The hillslope study area is located on the south aspect
of WS10, 91 m upstream from the stream gauging station
(Fig. 1). The 125 m long stream-to-ridge slope is slightly
convex with an average gradient of 37�, ranging from
27� near the ridge to 48� adjacent to the stream. Elevation
ranges from 480 to 565 m. The hillslope is underlain by
bedrock of volcanic origin, including andesitic and
dacitic tuff and coarse breccia [62]. Soils, formed either
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Fig. 1. Map of the study area.
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in residual parent material or in colluvium originating
from these deposits, are classified as Typic Dystrochrepts
[69,59]. Soil textures range from gravelly, silty clay loam
to very gravelly clay loam. Surface soils are well aggre-
gated, but lower depths (70–110 cm) exhibit more massive
blocky structure with less aggregation than surface soils
[24,59]. Beneath the weakly developed A and B horizons
is relatively low permeability, partially weathered parent
material (saprolite) ranging in thickness from 1 to 7 m
[48,59]. The depth to unweathered bedrock ranges from
0.4 to 0.6 m at the stream–hillslope interface and increases
gradually toward the ridge to approximately 3–8 m. Harr
and Ranken [25,59] had excavated eleven soil pits on the
study slope (Fig. 1) and collected at least six undisturbed
soil cores from each pit at depths of 10, 30, 70, 110, 130,
and 150 cm (200 and 250 cm cores were collected where
feasible), totaling 452 soil cores. The soil cores were ana-
lyzed for hydrologic properties including hydraulic con-
ductivity, porosity, pore-size distribution, moisture
characteristics, and stone content [24,48]. Mean values
of the six replicated cores were reported in archived data
records (Forest Service Data Bank, maintained by the
HJA LTER program).

Relatively well defined seeps have been identified flow-
ing from the base of the hillslope soils into the stream chan-
nel [24,63]. These seeps are highly localized zones of
saturated soil related to the microtopography of the
unweathered bedrock near the stream or to the presence
of vertical, andesitic dikes approximately 5 m wide, which
are located within the southern aspect hillslope [24,62].
Maximum water table development over the bedrock sur-
face on this hillslope never exceeded 25 cm in thickness.
The main rationale for selecting this study slope was the
richness of local data resources from these previous studies
[24,48,58,59,63].
3. Field methods and results

3.1. Field methods

A 10 m long trench was constructed to measure subsur-
face flow at a natural seepage face using steel sheeting that
was driven approximately 5 cm into the exposed bedrock
and then sealed with hydraulic cement to intercept subsur-
face water. Intercepted subsurface water was routed to a
calibrated 15� V-notch weir that recorded stage at 10-min
time intervals using a 1-mm resolution capacitance water-
level recorder (TruTrack, Inc., model WT-HR). Precipita-
tion was measured with a tipping bucket and storage gauge
in a small canopy opening on the hillslope. A roof was con-
structed over the trench to prevent interception of direct
precipitation and no surface overland flow was observed
during the study. The drainage area of the hillslope was
delineated topographically from a total station survey
(130 points) of the entire hillslope (0.17 ha) and verified
by a water balance calculation. We used a rounded value
of 0.2 ha in all analyses. A detailed knocking pole survey
[76] of the lower 30 m of hillslope was used to determine
bedrock topography (Van Verseveld, unpublished data)
and extend soil depth data collected by Harr and Ranken
[25].

Two line source tracers were applied to the hillslope
immediately before a large winter rainstorm (66 mm,
49.5 h duration) that began on 9 December 2002 at
21:30 h. 20.9 g of Amino G acid monopotassium salt
(AGA), a fluorescent dye [57], and 4.0 kg of bromide (as
LiBr solution) were applied 19 and 33 m (slope distance)
from the trench, respectively. AGA is preferred over other
fluorescent dyes since it has lower adsorptive loss in soils
[64]. The AGA was injected using syringes beneath the
organic horizon soil over a 2.5 m long application line
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and Br� was sprayed onto the soil surface with a backpack
sprayer along a 5.0 · 0.10 m application area. The AGA
concentrations were measured at 2-min intervals for 9 days
using a field fluorometer equipped with a flow-through cell,
data logger, and long wavelength optical kit (Turner
Designs, Inc., Sunnyvale, CA, model 10-AU). Bromide
was also measured in situ using an ion-selective electrode
(TempHion�, Instrumentation Northwest, Inc., accu-
racy = ±5%) and recorded on a Campbell CR10X (Camp-
bell Scientific, Inc.) data logger at 5-min time intervals until
31 March 2003. Grab samples were collected from the start
of the experiment until 18 February 2003 at both the trench
(AGA: 272 samples, Br: 107 samples) and at the WS10
catchment outlet (AGA: 257 samples, Br: 270 samples).
The AGA grab samples were analyzed in the laboratory
using the same fluorometer, whereas Br� samples were fil-
tered and analyzed using an ion chromatograph at the
Boise Aquatic Sciences Lab (Rocky Mountain Research
Station, Boise, ID). Background apparent concentrations
of AGA were evaluated at the hillslope during a storm
prior to the tracer experiment. Maximum background
AGA concentrations, which coincided with discharge
peaks, ranged from 3 to 10 lg L�1. Background Br� con-
centrations were not detectable (<0.45 mg L�1).

3.2. Field results: tracer breakthrough

The response to the tracer application was extremely
rapid (Fig. 2). Tracer concentrations peaked 40.4 and
40.3 h (61.2 mm of rainfall) after the start of the storm (9
December 2002 21:30 h), for AGA and Br�, respec-
Fig. 2. Time series of observed rainfall and runoff (a), breakthrough of brom
cumulative mass relative to injected mass) (c). Bromide and AGA were sampled
grab samples were collected at 4–7 h intervals for AGA until 4 February 2003 w
breakthrough (b) are expanded in the inset figure and the beginning of the x-
tively.These response times indicate that subsurface flow
velocities were 0.47 and 0.82 m h�1 for the AGA and
Br�, respectively, based on the rainfall initiation time.
The near synchronous response of both tracers suggests
strong lateral preferential flow and little difference in trans-
port between the two application distances. During the first
10 days of the experiment, both AGA and Br� concentra-
tions were high and responsive to rainfall with somewhat
smoother Br� concentrations indicating higher dispersion
compared to the AGA tracer (Fig. 2b, inset). After this per-
iod, the concentrations began to slowly recede and recov-
ery rates decreased. Overall, 19% and 53% of the applied
tracer mass was recovered for AGA and Br� at the trench
site, respectively. No detectable concentrations of either
tracer were observed at the WS10 outlet, mainly due to
dilution from the higher discharge in the stream (�2 orders
of magnitude volumetric flow). We expected higher recov-
ery rates of AGA, since it was applied much closer to the
hillslope trench; however, the low AGA recovery was likely
an artifact of sorption to organic material. Also, due to dif-
ficulties in quantifying background concentrations (see
[57]), the AGA recovery is uncertain and likely overesti-
mated. Hence, we did not model the AGA breakthrough
data.

4. Modeling methods and results

4.1. Modeling methods

We used a simple physically-based hillslope model, Hill-
Vi, to describe water and solute flux at our hillslope under
ide and Amino G acid (AGA) (b), and tracer mass recovery (M/M0 is
continuously from 9 December 2002; however, beginning on 19 December,
hen concentrations were at or below background levels. The first 9 days of

axis indicates the start of the experiment (9 December 2002 21:30).
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natural rainfall conditions during the tracer experiment.
This model was introduced by Weiler and McDonnell
[71] as a tool to perform virtual experiments on hillslopes
to address process controls on the generation of subsurface
flow. Hill-Vi has been used in subsequent work to test
nutrient flushing hypotheses [73] and to explore the effects
of pre-event water variability on estimated runoff compo-
nents and the connectivity of hillslope preferential flow net-
works [74]. This is the first study to use Hill-Vi in
conjunction with a field experiment. We based the model
structure on our best process understanding determined
from WS10 past field investigations [24,25,48]. We present
only a brief overview of the model here, highlighting spe-
cific features that relate to runoff generation in WS10.
Detailed descriptions of the overall model are provided
by Weiler and McDonnell [71,73].

Hill-Vi is a spatially explicit model that solves basic con-
tinuity equations within coupled unsaturated and saturated
zones. The unsaturated-saturated zone coupling was imple-
mented to represent unsaturated zone conversion to tran-
sient saturation during storm events, which is observed
frequently in field studies [2,24,37,41]. The unsaturated
zone is defined by the depth from the soil surface to the
water table and is characterized by time-variable water
content [52]. The saturated zone is defined over an imper-
meable or semi-impermeable bedrock surface by the thick-
ness of the water table and the porosity, n. Lateral
subsurface flow is calculated using the Dupuit–Forchhei-
mer assumption and routed downslope using the approach
of Wigmosta and Lettenmaier [75], according to the water
table gradients between grid cells. Lateral subsurface flow
only occurs within the saturated zone.
Fig. 3. Measured saturated hydraulic conductivity (Ksat) and drainable porosit
line). Drainable porosity is taken as the difference in volumetric water content
of six cores and the dashed lines are the 95% prediction limits.
Hill-Vi uses a depth function for drainable porosity as a
control on transient water table development [71]. The dra-
inable porosity is defined by the difference in volumetric
water content between 0 and 100 cm of water potential
(i.e., approximately from saturation to field capacity).
Field observations show that the drainable porosity
declines dramatically with depth due to changes in the soil
structure and macropore development. Fig. 3a shows the
drainable porosity calculated from soil core data collected
at WS10 and an exponential function and prediction limits
(95%) that indicate the overall trend and variability in dra-
inable porosity with depth. The drainable porosity, nd, is
represented in the model by the following function:

ndðzÞ ¼ n0 exp � z
b

� �
; ð1Þ

where n0 is the drainable porosity at the soil surface and b

is a decay coefficient.
We calculate the water balance of the unsaturated zone

by the rainfall input, vertical recharge into the saturated
zone, and change in water content. Recharge from the
unsaturated zone to the saturated zone is controlled by a
power law relation of relative saturation within the unsat-
urated zone and the saturated hydraulic conductivity (Ksat)
at the depth of the water table, z 0(t):

RðtÞ ¼ hðtÞ
hs

� �c

k0 exp � z0ðtÞ
f

� �
; ð2Þ

where R is recharge to the saturated zone, h/hs describes the
relative water content, c is the power coefficient reflecting a
nonlinear response to increased wetness, z 0 describes the
location of the water table surface, k0 is the surface Ksat,
and f is the hydraulic conductivity shape factor for an
y (nd) from soil pits shown in Fig. 1 [48] fit to exponential functions (solid
between saturation and 100 cm of tension. Each point represents the mean
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exponential Ksat function. Fig. 3b shows the exponential
reduction and considerable variability in Ksat determined
from the WS10 data [48]. Eq. (2) represents the vertical
water flux component described by Harr [24], which is
essentially based on the Brooks and Corey [11] method.
The water balance of the saturated zone in each grid cell
is defined by the recharge input from the unsaturated zone,
the lateral inflow and outflow, and the corresponding
change of water table depth.

Actual evapotranspiration, Eact, is simply estimated
based on the relative water content in the unsaturated zone
(h/hs) and the potential evapotranspiration, Epot [5,51]:

EactðtÞ ¼ Epot

hðtÞ
hs

� �
: ð3Þ

Potential evapotranspiration was assumed a constant va-
lue in this study equal to the mean Epot estimated with
a temperature index model [23] (1 mm d�1), since climatic
and moisture conditions remain relatively constant
through the winter period at the HJA. Rainfall intercep-
tion loss was calculated using empirical relationships
developed for the HJA [50], even though forest canopy
characteristics were likely dissimilar. Keim et al. [29]
showed that storm-to-storm variability in interception ex-
ceeds any differences in stand structure, age, and tree size;
thus, we used Rothacher’s [50] regression model develop
for the HJA to provide a first-order approximation for
any interception loss.

Solute flux in recharge, mr, depends on the average con-
centration in the unsaturated zone and is determined by:

mrðtÞ ¼ RðtÞ MunðtÞ
SunðtÞneff

; ð4Þ

where R(t) is the recharge of a grid cell at time t and Sun is
the water storage in the unsaturated zone, and neff is the
effective porosity (total porosity (n) · effective porosity
coefficient (*neff)). Effective porosity is a common simplifi-
cation describing the porosity available for fluid flow and
thus, the available pore space for solute mass transfer
[3,60]. The lateral subsurface solute flux is calculated in a
similar fashion by multiplying the subsurface flow with
the average concentration in the saturated zone. Mass ex-
change between the saturated and unsaturated zone under
transient water table conditions is contingent on the change
in water table depth (Dw) and the difference between neff

and nd (i.e., the proportion of water that is drained by
the falling water table). Weiler and McDonnell [71] showed
that under a falling water table, solute is transferred (Dm)
from the saturated to the unsaturated zone depending on
the change in water table position, Dw, and the average
concentration in the saturated zone:

DmðtÞ ¼ M satðtÞ
wðtÞneff

DwðtÞðn�ndÞ; ð5Þ

nd ¼
n0b

DwðtÞ exp �wðtÞ þ DwðtÞ
b

� �
� exp �wðtÞ

b

� �� �
; ð6Þ
where Msat is the actual mass of solute in the saturated
zone, nd is average drainable porosity between the water ta-
ble, w(t), at time t and Dw(t), which is the change in water
table depth from the previous time step. If the water table is
rising, the mass transfer depends on the average concentra-
tion in the unsaturated zone [71]:

DmðtÞ ¼ MunsatðtÞ
½D� wðtÞ�neff

DwðtÞðn� ndÞ; ð7Þ

where D is the soil depth and Munsat is the actual mass of
solute in the unsaturated zone. We assume that the rising
water table can only mobilize solute within the newly satu-
rated portion of the soil profile. The concentrations in the
saturated and unsaturated zone are calculated under the
assumption of complete mixing in each zone and each grid
cell.

We found during early model runs that too much tracer
had been retained in the unsaturated zone, which was an
artifact of our well-mixed unsaturated zone assumption.
Thus, a bypass term was introduced that allowed for wet-
ness dependent bypass of the unsaturated zone, a process
that has been frequently observed in aggregated soils [47]
and in other hillslope studies [14,32,37]. Bypass flow, qbp,
is dependent on the precipitation rate and soil moisture:

qbpðtÞ ¼ P
hðtÞ
hs

� �b

; ð8Þ

where P is the precipitation rate and b is the bypass power
coefficient. The mass flux of bypass flow is also assumed as
the average concentration in the unsaturated zone similar
to Eq. (4).

The model domain was established using a DEM
(4 · 4 m) constructed from the topographic and soil depth
survey, which extended beyond the delineated topographic
drainage boundary. Measured soil hydrologic properties
were used to parameterize the model; however, as illustrated
by Fig. 3, there was large variability in the measured data
values. Therefore, a Monte Carlo search was performed
over expected parameter ranges based on the field data.
The objective criteria used to assess model performance
were the Nash–Sutcliffe efficiency (E) [43] for runoff and
mass flux. Due to model computation time (30 minutes
per model run), a detailed uncertainty analysis (e.g., [7])
was not performed; however, we include relative uncertainty
measures and scattergrams of Monte Carlo parameter sets
(1000 runs) and the Nash–Sutcliffe efficiencies. We defined
uncertainty based on the top 20% performing parameter sets
as the range between parameter values of the 0.1 and 0.9 per-
centiles divided by the median parameter value expressed as
a percentage, consistent with the approach of Seibert and
McDonnell [51]. Therefore, lower uncertainty values indi-
cate a well-conditioned parameter value.

After a calibrated model was achieved (i.e., using field
data and inverse methods), we assumed that it provides a
first-order approximation for hillslope subsurface flow
and transport, and is sufficient for performing numerical
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experiments (i.e., scenarios) to examine hillslope-scale tran-
sit time distributions. Transit time, which describes the
time for tracer to travel from entry to exit in the hillslope,
can be directly simulated by applying a conservative tracer
instantaneously to the entire hillslope:

TTDðtÞ ¼ CIðtÞR1
0 CIðtÞ dt

¼ CIðtÞQðtÞ=M ; ð9Þ

where TTD(t) is the transit time distribution from the mod-
el, CI(t) is the concentration of instantaneously applied tra-
cer at t = 0 and M is the tracer mass applied to the entire
surface of the hillslope in the model domain. Thus, the
boundary conditions of our model differ from the field
experiment so that tracer is distributed uniformly over
the entire hillslope. Since many theoretical transit time dis-
tributions are derived for steady-state systems (e.g.,
[19,35]), we first simulated a steady-state case by running
the model with a constant rainfall rate (i.e., average of
the study period). Then, we simulated the dynamic case un-
der natural rainfall conditions where we produced different
TTD realizations by injecting tracer at monthly intervals
from 1 November (immediately after driest three months)
to 1 March (the middle of the wet season). All tracers were
applied in the model on the first of the month and were
simulated for one year (roughly the time of 100% mass
recovery for this hillslope domain).

4.2. Modeling results: the line-source tracer experiment

Model calibration for the line-source tracer experiment
was based equally on two criteria: (1) how well simulated
runoff fit the observed hillslope runoff (runoff efficiency)
and (2) how well the simulated mass flux fit observed bro-
mide mass flux (mass flux efficiency). The best parameter
set identified in the Monte Carlo analysis (i.e., the average
of the two efficiency measures) was also the best parameter
set based on only the mass flux E. The parameters for this
model are shown in Table 1 along with the best parameter
set based on the runoff E. The identifiability of the param-
eters is illustrated by the scattergrams in Figs. 4 and 5 and
Table 1
Model parameter description, data limits, values used in simulations

Parameter Description Data

Lower lim

n Average soil porosity 0.42
b (m) Shape factor for drainable porosity function 1
n0 Surface drainable porosity 0.17
f (m) Shape factor for hydraulic conductivity function 0.5
k0 (m h�1) Surface hydraulic conductivity 4.4
c Recharge power coefficient 23d

b Bypass power coefficient –
*neff Effective porosity coefficient –

a Best parameter sets determined by fit to runoff (model 1) and mass flux (mo
and model 2 efficiencies were 0.84 and 0.59 for runoff and mass flux, respectiv

b Uncertainty is defined as range between the 0.1 and 0.9 percentile divided by
c Selected parameter set for transit time model scenarios.
d Estimated using the Brooks and Corey [11] pore-size distribution index.
by the relative uncertainty values listed in Table 1. Only a
few of the parameters appeared to be identifiable (i.e., con-
verge toward a maxima) based on the E criterion for runoff
alone (n, b, c, and b) (Fig. 4). When the model was cali-
brated based on the mass flux E, several parameters
resulted in different optimum values (n, f, k0, and c). Even
though, the efficiency was lower for mass flux, many of the
parameters were more identifiable and had lower relative
uncertainties (Fig. 5, Table 1). Also, the additional mass
flux objective criterion, increased parameter identifiability
from calibration determined based on only runoff for b,
n0, f, and k0. Most calibrated values fell within the range
obtained from measured soil hydrologic properties (Table
1). For instance, parameters defining the drainable porosity
and Ksat depth functions were well within the range of the
prediction limits shown in Fig. 2. The exceptions were the
total porosity calibrated to the runoff data and shape fac-
tor, f, calibrated to the mass flux data.

Fig. 6 shows the model simulations and observed data
time series. The best parameter set selected based on
mass flux had efficiencies of 0.84 (runoff) and 0.59 (mass
flux), while the best parameter set selected based on run-
off had efficiencies of 0.92 (runoff) and 0.19 (mass flux)
(Table 1). Although, both models produced reasonable
simulations compared to runoff, our objective was to sim-
ulate both runoff and tracer. Using tracer mass flux as an
additional objective criterion we were able reject the best
runoff parameter set, since it fit the mass flux poorly
(Fig. 6b, E = 0.19). Runoff efficiencies were between
0.76 and 0.88 for parameter sets that produced mass flux
E > 0.50. Mass recovery for both models slightly deviate
from the observed recovery; however, the best runoff
parameter set significantly under-predicts mass flux dur-
ing the first 2 weeks of the experiment, when about half
of the total recovery occurred. The best mass flux param-
eter set recovered tracer similarly to the observations for
the first 2 weeks when most of the tracer was exported.
These recovery rates were based on the local mass recov-
ery at hillslope grid cells that represented the trench face.
Mass recovery for the entire model domain was 99% for
Model parameter sets

it Upper limit Model 1a (uncertaintyb) Model 2a,c (uncertainty)

0.56 0.58 (25%) 0.41 (34%)
2 1.61 (34%) 1.50 (34%)
0.30 0.20 (48%) 0.20 (36%)
0.8 0.66 (30%) 0.80 (13%)
9 8.84 (42%) 6.67 (25%)

114d 75.2 (41%) 44.9 (71%)
– 13.5 (68%) 10.4 (80%)
– – 0.55 (46%)

del 2) observed data, respectively. Model 1 efficiencies were 0.92 and 0.19
ely.
the median for the top 20% performing (i.e. based on E) parameter values.
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both parameter sets, suggesting that only half of the tra-
cer was recovered during the field experiment possibly
due to flow around the trench controlled by the bedrock
topography.
4.3. Using the model to explore the transit time distribution

Using the best parameter sets from above, we simulated
a constant rainfall rate of 0.2 mm h�1 for 416 days



Fig. 6. Observed (solid black line) and simulated runoff (a), line-source tracer breakthrough as mass flux (b), and mass recovery (c). Gray lines indicate the
best model fit to the observed runoff data (model 1) and dashed lines indicate the best model fit to the observed mass flux data (model 2). Nash–Sutcliffe
efficiencies (E) [43] describing the goodness-of-fit are shown. The final mass recovery for both simulations was 50% and observed mass recovery was 53%.
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(10,000 h) to calculate steady-state transit time distribu-
tions (TTDs). Once steady-state conditions were reached
(83 days after rainfall initiation), we applied an instanta-
neous conservative tracer to the entire surface of the model
domain. The resulting tracer breakthrough curves normal-
0 50 100 150
0

1

2

3

4

5

6

7
x 10

5

← model 1 mean
(108 days)

Transit Tim

T
ra

ns
it 

T
im

e 
D

is
tr

ib
ut

io
n,

 fr
eq

ue
nc

y

model 2 mean →
(92 days)
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eter sets calibrated to runoff (model 1) and tracer mass flux
(model 2). The mean transit times for the model simula-
tions were 92 and 108 days for the models 1 and 2, respec-
tively (Fig. 7). The TTDs describe the average transport
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om the models calibrated to runoff (model 1) and tracer mass flux (model 2).
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behavior produced by the model with the two different
parameter sets highlighting the need and value of a multi-
criteria approach to calibration.

The simulated distribution (based on the model cali-
brated to tracer mass flux) is generally exponential
(Fig. 8), but contains a distribution peak at 10 days. We
tested the fit of common transit time distributions (e.g.,
the dispersion and gamma models), but they did not fit
the simulated distribution better than the exponential dis-
tribution (or when the gamma distribution had a shape
parameter equal to 1 (i.e., exponential) see [39]). The early
time peak of the TTD indicates a lack of short flow path-
ways; nevertheless, it largely reflects the response of a
well-mixed reservoir (i.e., an exponential TTD) where the
outflow decreases monotonically due to mass loss from
the hillslope and the lack of new tracer inputs.

The simulation of non-steady TTDs was carried out
under a natural rainfall series and by applying separate
conservative tracers to the model domain at different times
of the year to examine the effect of antecedent wetness on
the shape of the TTD. These results are shown in Fig. 9.
Mean transit time varied between 54 and 69 days reflecting
more rapid transport compared to the steady-state case.
Cumulative forms of the TTDs are shown in Fig. 9b, since
each individual TTD simulation is easier to distinguish in
this form. The driest month, November, had the slowest
mass recovery (55 d to recovery 50% mass) and wettest
month had the most rapid mass recovery (23 d to recovery
50% mass) (Fig. 9). Recovery rates were most significantly
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Fig. 8. Simulated transit time distribution (solid black line) for steady-state c
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influenced by rainfall in the 30-day subsequent period after
tracer application as opposed to 7 or 14 days after, or 7, 14,
or 30 days before tracer application. The correlation
between mass recovery rates for 25% and 50% recovery
and the 30-day subsequent total rainfall were both 0.81,
indicating that the hillslope more efficiently exported tracer
when wet periods followed the tracer addition and thus
yielded shorter TTDs.

The non-steady TTDs diverged from the simple expo-
nential distribution that was fit to the mean transit time
of all TTDs shown in Fig. 9. During the early time portion
of the TTDs (i.e., transit times <100 d), most TTDs showed
much more responsive behavior or weighting at early times
in the breakthrough (the exception being the November
TTD). Thus, the TTDs during wetter months recovered
tracer much faster than the exponential distribution, which
resulted in less mass recovered during later periods (i.e.,
transit times >150 d). This effect was largely controlled
by the dry summer period (transit times between 150 and
260 d for most TTDs shown in Fig. 8), when subsurface
flow velocities were significantly reduced. Interestingly,
the general shape of TTDs reflects the exponential distribu-
tion perhaps deviating during early and late-time periods.
The late-time period highlighted in the inset of Fig. 8a
shows that tracer recovery for the March TTD resumed
when the system wetted up after the summer drought per-
iod. This produced a slightly more linear tail on the loga-
rithmic axes (non-exponential behavior) with 97% tracer
recovery after 1 year.
250 300 350 400
ime, days

100 102

onditions (also shown as model 2 in Fig. 7) compared to an exponential
e for both distributions (92 days) and the inset plot shows the same
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5. Discussion

5.1. Model process representation

The two-part model calibration approach with runoff
and the applied tracer experiment permitted the explora-
tion of model complexity and process representation by
our model. Runoff data alone did not contain enough
information to represent the hydrological processes deter-
mined from field studies at this site, since many model
parameters were not well-identified. The inclusion of the
line-source tracer experiment and the additional calibration
to mass flux, improved parameter identifiability, which
provided further insight to the process controls on hills-
lope-scale water and solute flux. The measured Ksat values
represented by the exponential depth function appeared to
be too low for simulating tracer transport, especially dee-
per in the soil profile. This can be illustrated by examining
the better performing values of f in Fig. 5 that approach the
upper limit prescribed by the data indicating that better
performance was achieved for higher Ksat values at depth.
Also, effective porosity was quite important for simulating
tracer mass flux, which suggests that an immobile soil frac-
tion that controls the mixing volume is an important pro-
cess to represent in the model structure. The bypass term
did not appear to be as significant as we expected based
on our field observations, which included dye staining
experiments at a nearby site (e.g., [72]), and the observa-
tions presented in other published studies [26,28,47,65].
Optimized bypass parameters fit to both runoff and mass
flux showed that smaller values (i.e., less bypass) produced
better simulations. However, bypass was necessary to cap-
ture the general responsiveness of the tracer and water flux
observed at the trench face.

Weiler and McDonnell [71] demonstrated that when
drainable porosity was high (e.g., WS10 soils), modeled
saturated zones were restricted in thickness, tracer mass
exchange between the unsaturated and saturated zone
was limited, and tracer movement was more affected by
bedrock topography. In our study, the drainable porosity
was important in modeling the rapid breakthrough of tra-
cer, thin saturated zone development, and convergence of
tracer along the bedrock surface towards trench face that
resulted in similar modeled mass recovery compared to
our field data. The sensitivity of tracer transport to the bed-
rock topography may have caused the observed recovery
rates, which were constrained by the trench length and
location relative to the bedrock topography.

5.2. Model inferred transit time distributions

The direct simulation of transit time distributions
(TTDs) provided an experimental approach to estimating
the TTD of a hillslope and insight to our model represen-
tation of flow pathways. The observed tracer breakthrough
curves of Br� and AGA suggested that extremely rapid
contribution from upslope areas can occur within the time-
scale of a single storm event. Both the steady and non-
steady-state TTD simulations indicated that peak tracer
mass flux was delayed, although some tracer was trans-
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ported from the hillslope within 1–2 days. This varied to
some extent for the individual non-steady TTDs, since
the tracer response was largely controlled by the timing
of storm events. However, as illustrated by the steady-state
TTD, when soil water deficits were no longer important,
the main response occurred about 10 days after the mod-
eled tracer injection with some contributions from short
pathways that occurred within 1 day (Fig. 8).

Other studies have produced TTDs that are similarly
shaped to the steady-state TTD found in this study. For
example, Rodhe et al. [49] experimentally derived from a
covered catchment study a TTD that was essentially expo-
nential, but had a peak in the TTD at early time. Rodhe
et al. [49] suggested the existence of a maximum peak in
the TTD may not be significant and that the distribution
approximates an exponential.

Simic and Destouni [54] derived the TTD produced in
Rodhe et al. [49] theoretically using a stochastic-mechanis-
tic model. Their theoretical model described non-uniform
flow conditions resulting from groundwater recharge
through the unsaturated zone, but also incorporated pref-
erential flow, diffusional mass transfer between mobile
and relatively immobile water, and random heterogeneity
resulting from spatially variable transmissivity. While our
steady-state model did not explicitly account for all of these
processes (mainly because the water table was constant and
no mass exchange occurred between the unsaturated and
saturated zones), the non-steady TTDs that we simulated
reflect many of theses processes such as time-variable
recharge, preferential flow, and mass transfer between
mobile/immobile domains (i.e., saturated/unsaturated
zone) due to water table dynamics, suggesting that realistic
hillslope TTDs are evidently more complex than the
steady-state TTDs.

Under steady-state conditions, the unsaturated and sat-
urated zones become effectively decoupled in our model,
since water table fluctuations no longer rise and fall nor
remobilize tracer in the unsaturated zone. A model that
included interaction between the unsaturated and saturated
zones was necessary to incorporate the dynamic behavior
that was illustrated in the observed breakthrough curve
and hence the true, unknown TTD. Even though the expo-
nential distribution seemed to describe the predominant
trend of the non-steady TTDs (Fig. 9), simplifying assump-
tions regarding the subsurface volume and mixing behavior
in our model likely resulted in inaccurate late-time TTD
behavior. For instance, the shapes of the TTD tails shown
in Fig. 8 reflected a more power-law behavior (especially
the March TTD) as did the observed breakthrough data.
This was likely a model artifact of the well-mixed assump-
tion in each zone (unsaturated and saturated) and model
grid cell.

The simulated distributions found here were much
younger than estimates based on observed stable isotope
signatures (see [40]), which were on the order of 2 years
old. There are two reasons for this discrepancy (1) the sta-
ble isotope estimates largely reflected baseflow conditions
(due to the runoff sampling routine described in McGuire
et al. [40]), whereas this direct simulation approach incor-
porated the storm dynamics and (2) the mixing volume
of our model did not include sources other than the rego-
lith (i.e., no bedrock contribution). These observations
reveal the need for future studies to incorporate bedrock
contributions within catchment models that predict solute
response and transit time investigations that include vari-
able flow conditions.

5.3. On the value of integrating tracer experiments with

hydrologic models

Since many catchment and hillslope scale applications
require predictions concerning water quality, representing
realistic transit time distributions and storage in hydrologic
models is important. As demonstrated in this study by the
high runoff efficiency achieved when only runoff was used
to evaluate model performance, the best fitting model is
not necessarily consistent with the internal process behav-
ior as shown by the TTDs simulated using different param-
eter sets (Fig. 7). Applied tracer experiments offer an
additional data source, which by nature, integrates flow
heterogeneity into the tracer breakthrough. The break-
through curve, like a hydrograph, reflects all of the physical
process complexity into one signal and thus, provides an
ideal source of information to help constrain parameteriza-
tions and reduce model uncertainty. Then, as shown in this
study, a model calibrated to tracer data can be used to
explore transit time distributions, which describe how
potential contaminants and solutes are retained within a
catchment or hillslope. Furthermore, the modeled transit
time distribution can be drawn on to better understand
the limitations of model structures and to independently
assess the need to incorporate (or reject) additional process
detail or heterogeneity as discussed in the previous section.

6. Conclusions

We argue that the combination of the tracer experiment,
modeling exercise, and transit time simulation provides a
more integrated approach to investigate runoff processes.
These techniques helped to simplify observed process com-
plexity and evaluate dominant physical processes used to
structure the model. We presented a simple, spatially-
explicit hydrologic model in order to identify the dominant
processes necessary to explain both water and solute flux at
the hillslope scale. This was accomplished by testing the
model with a line-source tracer experiment, which improved
parameter uncertainty, even though the overall model per-
formance based on the fit to the runoff data decreased.
The model was then used as an exploratory tool to infer
potential transit time distributions that in turn assisted in
the assessment of our model structure. The subsurface vol-
ume, the mixing assumption, and the water table dynamics
were all found to be important controls on the distribution
of transit times and potential areas of improvement within
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our model framework. Further model improvements by
including other data sources (e.g., groundwater levels) and
developing more efficient computer code to run comprehen-
sive uncertainty analyses are currently underway.
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